HILLROSE TOWN OF 2019 Drinking Water Quality Report For Calendar Year 2018

Public Water System ID: CO0144010

Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact DALE COLERICK JR at 970-842-5001; 970-847-3761 with any questions or for public participation opportunities that may affect water quality.

Our Water Sources

Sources (Water Type - Source Type)	Potential Source(s) of Contamination
PURCHASED FROM MORGAN COUNTY QUALITY WD (Groundwater-Consecutive Connection)	Permitted Wastewater Discharge Sites, Solid Waste Sites, Commercial/Industrial/Transportation, Low Intensity Residential, Urban Recreational Grasses, Row Crops, Fallow, Small Grains, Pasture / Hay, Oil / Gas Wells, Road Miles

Detected Contaminants

HILLROSE TOWN OF routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2018 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

Note: Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section then no contaminants were detected in the last round of monitoring.

	TT Requirem	e nt : At least 9	5% of samp		d (mon	th or qu	uarter) must b	e at least 0.2 pp	m <u>OR</u>			
							e is below 0.2	2 ppm				
		Туріса	al Sources:	Water additiv	ve used	to con	trol microbes					
Disinfectant Name	Time Period	1	Resu	ilts			ber of Samp elow Level	les Sample Size	TT Violation	MRDL		
Chlorine	December, 20			entage of sam irement: 100 ⁴	-		0	No	4.0 ppm			
		Lead a	nd Copper	Sampled in	the D	listribu	ition System	1		•		
Contaminant	Time	90 th	Sample	Unit of	90	0 th	Sample	90 th	Typical Sources			
Name	Period	Percentile	Size	Measure		entile	Sites	Percentile				
					A	L	Above	AL				
							AL	Exceedance				
Copper	09/06/2018	0.12	5	ppm	1	.3	0	No	Corrosion of			
	to								household	household plumbing		
	09/09/2018								systems; E	crosion of		
									natural d	leposits		
Lead	09/06/2018	1.5	5	ppb	1	5	0	No	Corrosion of			
	to								household	plumbing		
	09/09/2018								systems; E	crosion of		
									natural d	leposits		

	Disinfection Byproducts Sampled in the Distribution System											
Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources			
Total Haloacetic Acids (HAA5)	2017	13.1	13.1 to 13.1	1	ррb	60	N/A	No	Byproduct of drinking water disinfection			
Total Trihalome thanes (TTHM)	2017	31.5	31.5 to 31.5	1	ррb	80	N/A	No	Byproduct of drinking water disinfection			

Violations, Significant Deficiencies, Backflow/Cross-Connection, and Formal Enforcement Actions

No	Violations of	or Formal	Enforcement	Actions
----	---------------	-----------	-------------	---------

MORGAN COUNTY QUALITY WD 2019 Drinking Water Quality Report For Calendar Year 2018

Public Water System ID: CO0144020

Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact KENT PFLAGER at 970-867-3054 with any questions or for public participation opportunities that may affect water quality. The CCR will not be mailed and is available to the public upon request.

General Information

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting http://water.epa.gov/drink/contaminants.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

•Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

•Inorganic contaminants: salts and metals, which can be naturallyoccurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

•Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses. •Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.

•Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems

MORGAN COUNTY QUALITY WD, PWS ID: CO0144020

(especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

Source Water Assessment and Protection (SWAP)

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit <u>www.colorado.gov/cdphe/ccr</u>. The report is located under "Guidance: Source Water Assessment Reports". Search the table using 144020, MORGAN COUNTY QUALITY WATER DISTRICT, or by contacting KENT PFLAGER at 970-867-3054. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that <u>could</u> occur. It <u>does not</u> mean that the contamination <u>has or will</u> occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed on the next page.

Please contact us to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Quality Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day.

Our Water Sources

Sources (Water Type - Source Type)	Potential Source(s) of Contamination
WEINGARDT WELL 1 (Groundwater-Well) HILLROSE WELL (Groundwater-Well)	
GOODRICH WELL (Groundwater-Well)	
KRAUSE WELL 1 (Groundwater-Well)	
KRAUSE WELL 2 (Groundwater-Well) KRAUSE WELL 5R (Groundwater-Well)	Aboveground, Underground and Leaking Storage Tank Sites,
SMART WELL 1 (Groundwater-Well)	Other Facilities, Commercial/Industrial/Transportation, Low
SMART WELL 2 (Groundwater-Well)	Intensity Residential, Urban Recreational Grasses, Row Crops,
PURCHASED WATER FROM CO0144001 (Surface Water-	Fallow, Small Grains, Pasture / Hay, Septic Systems, Oil / Gas
Consecutive Connection) KRAUSE WELL 3R (Groundwater-Well)	Wells, Road Miles
WEINGARDT WELL 3 (Groundwater-Well)	
SAN ARROYO RECOVERY WELL 2 (Groundwater-Well)	
KRAUSE WELL 4R (Groundwater-Well)	
SAN ARROYO RECOVERY WELL 1 (Groundwater-Well)	

Terms and Abbreviations

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- Health-Based A violation of either a MCL or TT.
- Non-Health-Based A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- Formal Enforcement Action (No Abbreviation) Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.

- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- **Gross Alpha (No Abbreviation)** Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- **Picocuries per liter** (pCi/L) Measure of the radioactivity in water.
- Nephelometric Turbidity Unit (NTU) Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- **Compliance Value (No Abbreviation)** Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- Average (x-bar) Typical value.
- **Range** (**R**) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- Level 1 Assessment A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Detected Contaminants

MORGAN COUNTY QUALITY WD routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2018 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

Note: Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section then no contaminants were detected in the last round of monitoring.

	TT Requirem	ent: At least 9 If sample siz	95% of samp ze is less tha	n 40 no more	d (mon e than 1	nth or qu 1 sampl	e e		om <u>OR</u>	
Disinfectant Time Period Results Number of Samples Sam									TT	MRDL
Name						B	elow Level	Violation		
Chlorine	December, 20	December, 2018 Lowest period percentage of samples meeting TT requirement: 100%					0	8	No	4.0 ppm
		Lead a	nd Copper	Sampled in	the I	Distribu	ition System	1		
Contaminant Name	Time Period	90 th Percentile	Sample Size	Unit of Measure	Perc	0 th centile AL	Sample Sites Above AL	90 th Percentile AL Exceedance	Typical Sources	

	TT F	Requireme	ent: At least 95 If sample size	5% of sam the is less th		eriod (n nore tha	nonth o in 1 san	r quarter) i nple is belo	nust be at ow 0.2 ppr		ppm <u>OI</u>	<u>R</u>			
Disinfectant Name	: Tiı	me Period		Res	ults		N	umber of S Below L		Sample Size		TT Dation	MRDL		
Copper		21/2018 to 27/2018	0.14	20	ppm		1.3	0		No	Corrosio household p				
T 1			1	20	1		15			N	-	natural d	eposits		
Lead		21/2018 to 27/2018	1	20	ppb		15	0		No	systems		on of plumbing rosion of eposits		
			Disinfectio	n Byprod	lucts Sam	pled ir	n the D	istributio	on System		•				
Name	Year	Avera ge	Range Low – High	Sampl Size			MCL	MCLG	MC Viola		Ty	pical So	ırces		
Total Haloacetic Acids (HAA5)	2018	3.85	1.7 to 6	2	ppl)	60	N/A	No	-		Byproduct of drinking water disinfection			
(TTHM) Total Trihalo methanes	2018	16.85	9.4 to 24.3	2	ppl)	80	N/A	No			yproduct of drinking water disinfection			
		Ra	dionuclides S	Sampled	at the En	try Poi	nt to t	he Distrik	oution Sys	stem					
Contaminan Name	t Yea	r Avera	nge Ran Low –	-	Sample Size		it of Isure	MCL	MCLG	MC Viola		Typical	Sources		
Gross Alpha	. 2014	4 0.67	7 0 to	o 2	3	pC	Ci/L	15	0	No		No			ion of deposits
Combined Radium	2016	5 0.55	5 0.3 to	0.8	2	pC	Ľi/L	5	0	N			ion of deposits		
Combined Uranium	2014	4 2.77	7 0.9 to	0 4.2	3	p	pb	30	0	No				ion of deposits	
		Inorgan	ic Contamin	ants Sam	pled at th	e Entr	y Poin	it to the D	istributio	on Syste	m				
Contaminan Name	t Yea	r Avera	nge Ran Low –	-	Sample Size	Uni Mea		MCL	MCLG	6 MCL Violation		Typical	Sources		
Arsenic	2018	3 4	1 to	o 8	3	pr	ъb	10	0	No	1	deposits from or runoff fro and elec	chards; om glass		
Barium	2018	8 0.19	9 0.08 to	0.29	3	рр	m	2	2	No		Discha drilling discharg	wastes;		

	TT Re	equire		Disinfectants At least 95% of sar ample size is less t Typical Source	nples per pe han 40 no n	eriod (mon nore than 1	th or quarter sample is b) must be at elow 0.2 pp		m <u>OR</u>	
Disinfectant Name	Tim	e Peri	od	Re		Number o Below	-	Sample Size	TT Violation	MRDL	
										erosion of	fineries; of natural osits
Chromium	2018	1.	.67	0 to 3	3	ррb	100	100	No	steel an mills; en	rge from nd pulp rosion of deposits
Fluoride	2018	0.	31	0.18 to 0.45	3	ppm	4	4	No	deposit additiv promote teeth; d from fert alum	of natural s; water e which es strong ischarge ilizer and inum ories
Nitrate	2018	2.	.77	2.1 to 3.5	3	ppm	10	10	No	fertiliz leachir septic sewage; o	f from er use; ng from tanks, erosion of deposits
Selenium	2018	1	.67	1 to 2	3	ррb	50	50	No	petrole metal re erosion o deposits;	ge from um and fineries; of natural discharge mines
standard baland drinking water.	ces the c The EF	current PA cor	t under ntinues	the meets the EPA's standing of arsen to research the h tions and is linke	ic's possible ealth effect	e health ef s of low le	fects agains evels of arse	st the costs of th	of removing is a mineral	arsenic from known to ca	n iuse
**Seconda	nry stand			Se enforceable guidel tion) or aesthetic e		taminants	that may cau			h as skin, or	tooth
Contaminan Name	it Y	l'ear	Avera	-	nge – High	Samp Size		nit of easure	Seco	ndary Stand	ard
Sodium	2	2018	16.	5 10 to	0 26.3	3		ppm		N/A	

Violations, Significant Deficiencies, Backflow/Cross-Connection, and Formal Enforcement Actions

No Violations or Formal Enforcement Actions